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Cox proportional hazards regression analysis of survival data and conditional logistic regression analysis of
matched case-control data are methods that are widely used by epidemiologists. Standard statistical software
packages accommodate only log-linear model forms, which imply exponential exposure-response functions and
multiplicative interactions. In this paper, the authors describe methods for fitting non-log-linear Cox and conditional
logistic regression models. The authors use data from a study of lung cancer mortality among Colorado Plateau
uranium miners (1950–1982) to illustrate these methods for fitting general relative risk models to matched case-
control control data, countermatched data with weights, d:m matching, and full cohort Cox regression using the
SAS statistical package (SAS Institute Inc., Cary, North Carolina).
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Abbreviations: CI, confidence interval; ERR, excess relative risk; WLM, working level months.

Contemporary approaches to analysis of cohort and case-
control data often follow from risk-set sampling designs.
For cohort studies, risk-set sampling designs are related to
the Cox proportional hazards model; at each failure time,
a risk set is formed that includes the index case and a set of
controls comprising all other cohort members who are at
risk at that time (1). Similarly, contemporary approaches
to case-control designs typically involve a sampled risk
set, which is a subset of the full risk set enumerated at each
failure time (2, 3). These approaches both result in a data
structure that looks like matched case-control data with 1
case per case-control set. This motivates the use of the con-
ditional logistic likelihood for analysis of such data (1).

The procedures available in most standard statistical pack-
ages, such as SAS (SAS Institute Inc., Cary, North Carolina),
Stata (Stata Corporation, College Station, Texas), and R (R
Foundation for Statistical Computing, Vienna, Austria), for
fitting Cox or conditional logistic regression models limit
a data analyst to log-linear models of the form
logðuðz; bÞÞ ¼ zb, where z is a vector of explanatory vari-
ables and u is the rate (or odds) ratio. This implies exponen-

tial dose-response trends and multiplicative interactions. The
use of model forms other than the log-linear are desirable
when they provide a better representation of the exposure
response or when they address biologic or public health ques-
tions. They also may facilitate exposure-response analyses,
since misspecification of model form can lead to loss of
power for a model-based test of an exposure-response asso-
ciation and the possibility that estimates of effect for extreme
exposure levels will be substantially distorted (4). In recent
papers, investigators have described how standard statistical
software packages may be used to fit general relative risk
models (i.e., relative risk models not constrained to be log-
linear in form) in the context of Poisson regression and un-
conditional logistic regression analyses (5, 6). However, the
prior literature has not addressed the fitting of general relative
risk models in the context of the widely used approaches of
Cox regression analysis of survival-time data or conditional
logistic regression analysis of matched case-control data.

In this paper, we describe a relatively simple approach for
obtaining maximum conditional logistic likelihood estimates
from analysis of case-control and cohort data for general
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relative risk model forms and illustrate the implementation of
this approach using the SAS statistical package.

MATERIALS AND METHODS

Consider a regression model uðz; bÞ, where z represents
explanatory data from the epidemiologic study, b are param-
eters to be estimated, and u denotes the odds or rate ratio
function. Through the use of maximum likelihood methods
to fit general relative risk models, the u function can en-
compass a wide range of models besides the log-linear. The
linear excess relative risk (ERR) model, uðz; bÞ ¼ 1þ zb, is
one model form of interest, particularly in environmental
and occupational epidemiology. More broadly, Thomas (7)
described a class of relative risk models that permit a data
analyst to compare linear and log-linear dose-response
models or additive and multiplicative interaction models.
Models that are a mixture of linear and log-linear forms
may facilitate comparison of linear and log-linear models
by incorporating each as a special case of the broader set of
models under consideration (7, 8). One form of a mixture
model is uðz; bÞ ¼ ðezbÞað1þ zbÞ1�a (7, 8).

Generally, for any specified u, the conditional logistic
likelihood contribution can be written as

LðbÞ ¼ ucaseðbÞ=
X

case and controls

uj

�
b
�
; ð1Þ

where, with Zj the covariates for case-control subject
j,uj

�
b
�
¼ u

�
Zj; b

�
.

In this paper, we focus on the use of SAS PROCNLP to fit
these models. The procedure computes exact derivatives of
the log-likelihood function and produces likelihood esti-
mates via a ridge Newton-Raphson fitting algorithm; other
options for optimization are also available. Other statistical
packages that provide general optimization routines may be
used in the same way to implement the methods.

The analytical data structure for this implementation
differs from that employed in an unconditional logistic re-
gression analysis. A data structure that includes 1 record per
person under study might be referred to as a person-level
data structure (9). In contrast, we propose to create a data
structure that includes 1 record per case-control set (i.e., 1
record for a case and its complement of matched controls).
We refer to the latter as a case-control data structure.

Consider a case-control study in which incident cases of
disease have been ascertained over a period of follow-up. For
each case, 2 controls are selected from the study base, defined
as the population at risk at the time of case failure. For sim-
plicity, let us assume that the person-level data set includes
a binary indicator of case status, case, a single explanatory
variable of interest, z, and a numeric indicator of matched risk
sets, setno. A case-control data structure can be generated for
the purposes of conditional logistic regression analysis con-
sisting of 1 record for the case and associated controls, with
explanatory information being represented by the variables
z1, z2, and z3, where z1 denotes the case’s exposure to z and
z2 and z3 denote the controls’ exposures to z. Table 1 illus-
trates the person-level data structure and the case-control data
structure for a hypothetical 1:2 matched case-control study

with 7 cases. The case-control data structure shown in Table 1
can be easily generated from the person-level data structure
via SAS (Appendix 1).

A conditional logistic regression analysis of the association
between z and the outcome defining the case series, employ-
ing the standard log-linear model form u

�
z; b

�
¼ eðzbÞ, may

be fitted via SAS as follows:

proc nlp data¼ ;

parms beta¼0;

L ¼log(exp(z1*beta) / (exp(z1*beta)þ exp(z2*beta)þ
exp(z3*beta)));

max L; run;

The parms statement tells SAS that b is to be estimated and
sets the initial value to 0. The next line computes L, the
conditional logistic log-likelihood (equation 1). Finally,
the max statement specifies that the log-likelihood is to be
maximized with respect to the parameters in the parms
statement.

Now let us consider a non-log-linear model, such as the
linear ERR model given by uðz; bÞ ¼ ð1þ bzÞ. This model
may be fitted via SAS as follows:

proc nlp data¼ ;

parms beta¼0;

profile beta / alpha¼.05;

Table 1. Comparison of a Person-Level Data Structure (plevel) and

a Case-Control-Level Data Structure (cclevel) in a Hypothetical 1:2

Matched Case-Control Study With 7 Cases

Person-Level Data
Structure

Case-Control-Level
Data Structure

setno case z setno z1 z2 z3

1 1 1,819.9 1 1,819.9 105.0 1,244.4

1 0 105.0 2 2,367.0 626.9 271.0

1 0 1,244.4 3 2,978.0 281.0 440.2

2 1 2,367.0 4 1,200.8 99.0 355.3

2 0 626.9 5 1,207.0 443.2 196.8

2 0 271.0 6 299.0 158.0 287.0

3 1 2,978.0 7 1,091.1 518.9 202.3

3 0 281.0

3 0 440.2

4 1 1,200.8

4 0 99.0

4 0 355.3

5 1 1,207.0

5 0 443.2

5 0 196.8

6 1 299.0

6 0 158.0

6 0 287.0

7 1 1,091.1

7 0 518.9

7 0 202.3
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L¼log((1þz1*beta)/((1þz1*beta)þ(1þz2*beta)þ(1þ
z3*beta)));

max L; run;

A likelihood ratio test of b ¼ 0 can be obtained as twice the
(absolute) difference between the log-likelihood at b ¼
0 and the log-likelihood at the maximum likelihood estimate
in the usual way. In addition, we have included the profile
statement, which requests a 95% profile likelihood confi-
dence interval for the b estimate. This distribution of esti-
mated parameters in non-log-linear models is often not
symmetrical, and profile likelihood confidence intervals
are more accurate than Wald-type intervals.

1:m and 1:variable matching

The examples above concern a 1:2 matched case-control
study. The approach developed above easily extends from
1:2 matching to 1:m matching or 1:variable matching. The
latter is of practical importance, since often in case-control
studies a full complement of controls is not obtained for all
cases. As in the examples above for a 1:2 matched case-
control study, a data set is produced that consists of 1 record
per risk set, with a vector, Z, that indexes explanatory in-
formation for the case and its affiliated controls. To accom-
modate variable matching, a variable ntot is included that
gives the number of subjects (cases and controls) in each set.
For example, consider a case-control study in which up to 10
controls per case were selected. If the case-control set in-
cludes the full complement of controls, then ntot would
equal 11. A conditional logistic regression analysis of these
data employing the log-linear model form u

�
z; b

�
¼

eðzbÞcould be fitted via SAS as follows:

proc nlp data¼;

parms beta¼0;

array z[11] z1-z11;

sum¼0; ntot¼ntot;

do i ¼ ntot to 1 by -1;

phi ¼ exp(z[i]*beta);

sum ¼ sum þ phi;

end;

L¼log(phi/sum);

max L; run;

Similarly, non-log-linear models, such as a mixture model of
the form uðz; bÞ ¼

�
ezb

�að1þ zbÞ1�a, can be easily fitted to
1:variable matched case-control data via SAS (Appendix 2).

Analysis of survival time in the full cohort

Note that the conditional logistic likelihood contribution
for a case-control set in equation 1 is identical to the expres-
sion for the Cox likelihood contribution from a risk set when
there is a single failure at each failure time. As in the Cox
likelihood, the numerator of the term is the (relative) hazard
for the subject who experienced the event at the index time,
and the denominator is the sum of the (relative) hazards for all
subjects at risk at the index time (10). Therefore, by including
all controls for each case in a risk set, this approach can

accommodate Cox proportional hazards regression. Further,
stratified Cox regression can be fitted from ‘‘matched risk
sets’’ by restricting the risk set to include only the controls
who match the case on the stratification variables. Richardson
(11) provides a simple SAS macro for enumerating matched
risk sets. An analysis employing the log-linear model form
u
�
z; b

�
¼ eðzbÞyields the standard log-linear Cox regression

analysis. However, non-log-linear Cox regression models can
be fitted using the approach described above, with the Cox
regression analysis implemented as a form of a 1:variable
matched case-control analysis.

Sampling weights

In some case-control studies, controls are matched to the
index case on a variety of factors and countermatched on
exposure status (12). In such a study, investigators need to
incorporate sampling weights into the analysis to accommo-
date the countermatched design (13). In this situation,
a weight is constructed for each subject in the case-control
set. The weights are set to the countermatching sampling
weights. Appendix 3 illustrates extension of this approach to
accommodate countermatching sampling weights. In gen-
eral, the conditional logistic regression of case-control data
with ‘‘complex’’ sampling of cases and/or controls can re-
quire sampling weights for valid estimation. When sampling
is independent over case-control sets, the standard errors
and confidence limits from the weighted likelihood are valid
(14–16). However, for other sampling designs, such as case-
cohort-type designs, variance adjustment may be needed
(17–20).

d:m matching

The occurrence of 2 or more events at the same point in
time is referred to as tied data. In Cox regression analysis,
there are several different methods for handling tied data.
One approach is Breslow’s method (21), which is a standard
formula for analysis of d:m matched data with tied failure
times in Cox regression and is valid when the proportion of
cases in each risk (or case-control) set is very small. An
example of SAS NLP code to fit the Breslow likelihood is
available at a University of Southern California Web site
(http://hydra.usc.edu/timefactors/examples/example.html).
Breslow’s method can perform poorly when the proportion
of cases in the risk (case-control) sets is not ‘‘very small’’
(22), and we would argue that this approach need not be
used. This problem is remedied by use of exact methods;
one exact approach to analysis of risk sets with tied data
assumes that time is measured in discrete intervals and tied
events happened during the same interval. The form of
the (standard) conditional logistic likelihood for matched
case-control data, accommodating multiple cases in the
case-control sets, can be written as

LðbÞ ¼ uDðbÞ=
X

s�R:jsj¼jDj
usðbÞ; ð2Þ

where jsj is the number of elements in the set s so that
the sum in the denominator is over all subsets of the
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case-control set of size the number of cases. The number of
terms in the denominator increases exponentially with both
the number of cases and the number of controls; however,
a recursive fitting algorithm can be used to reduce the num-
ber of computations to a linear function of cases and
controls (1, 23). Appendix 4 provides SAS NLP code that
illustrates the use of the recursive algorithm to fit the con-
ditional logistic likelihood given in equation 2, providing an
exact method for analysis of tied data.

Empirical example

To illustrate this approach, we use data from a study of
underground uranium miners (24). The Colorado Plateau
cohort included male workers employed in underground
uranium mining operations between January 1, 1950, and
December 31, 1960. Vital status was ascertained through
December 31, 1982. The outcome of interest, lung cancer
mortality, was defined on the basis of underlying cause of
death, coded according to the revision of the International
Classification of Diseases that was in effect at the time of
death. The primary exposure of interest was defined as cu-
mulative radon exposure, expressed in working level months
(WLM), and was computed for each worker as the product
of the length of employment in each job in a year and the
estimated radon exposure rate for that job. For each lung
cancer death, a risk set was formed that included all workers
who were alive and eligible for study inclusion at the age of
death of the index case; controls were also matched to cases
on calendar year at risk (defined in 5-year categories
from <1960 to �1990). For example, if the case died of
lung cancer at age 62 years in 1958, the controls in the risk
set were all cohort members who were aged 62 years be-
tween 1955 and 1960 and were in the study at that age. For
analysis, we computed cumulative exposure up to 2 years
prior to the age of the risk-set index case (15).

First, we illustrate a 1:2 nested case-control study; this data
set included 263 lung cancer deaths. Two controls were se-
lected for each lung cancer death by random sampling with-
out replacement from all controls from the risk set. Second,
we illustrate a 1:variable matched case-control study, using
the nested case-control data, similar to the nested case-control
data set described by Langholz et al. (15). Forty controls were
selected for each lung cancer death by random sampling
without replacement from all controls from the risk set, un-
less there were fewer than 40 controls in the risk set, in which
case all controls were taken. Following the method of
Langholz et al. (15), we fitted a linear excess rate ratio model.
Third, we illustrate a 1:3 matched study with countermatch-
ing. In addition to modeling the effect of cumulative radon
exposure, we adjust for cumulative pack-years of cigarette
smoking. Fourth, we illustrate proportional hazards regres-
sion analysis for full cohort data, again fitting the model with
cumulative radon and smoking. In this example, we used
cohort data with tied failure times randomly broken so that
there was only 1 case in each risk set. Using the conditional
logistic likelihood method with multiple cases per set and an
exact method to handle tied data, we fitted this same model to
the full cohort data with multiple cases in each risk set at
a tied failure time. All analyses were conducted using the

SAS statistical package (version 9.2) (25). Profile likelihood
confidence intervals are reported via the profile statement.
The example data sets and SAS code used to perform these
analyses are available at http://hydra.usc.edu/timefactors/
examples/example.html (topic 10).

RESULTS

We commenced with a 1:2 matched case-control study of
the Colorado Plateau miners’ cohort. A log-linear condi-
tional logistic regression model was fitted via SAS PROC
NLP. The point estimate and standard error for the associa-
tion between cumulative exposure and lung cancer (b ¼
0.0453/100 WLM; standard error, 0.0066) were identical
(at 4 decimal places) to the conditional logistic regression
result obtained via SAS PROC LOGISTIC.

Next, we fitted a mixture model of the form
uðz; bÞ ¼

�
ezb

�að1þ zbÞ1�a via PROC NLP. A point esti-
mate for the ‘‘mixture’’ parameter, a, close to 1 indicates that
the data are more consistent with the log-linear model, while
an estimated a close to 0 is more consistent with the ERR
model. The point estimate for a (a ¼ �0.02, 95% confidence
interval (CI): �0.05, 0.00) provided evidence in favor of the
ERR model. The mixture model (�2 log L ¼ 486.1) fitted
much better than did the log-linear model (�2 log L¼ 501.3;
likelihood ratio ¼ 501.3 � 468.1 ¼ 33.2; P < 0.001). On the
other hand, the mixture model did not fit better than the ERR
model (�2 log L ¼ 471.4; likelihood ratio ¼ 471.4 �
468.1 ¼ 3.3; P ¼ 0.07), so the ERR form was a good choice.
Fitting the ERR model for lifetime cumulative exposure
yielded an estimated ERR/100 WLM of 0.38 (95% CI:
0.18, 0.95). A test of the null hypothesis yielded a 1-df chi-
squared value of 95.4 (P < 0.001).

We next fitted a 1:variable matched study in which up to
40 controls per case were sampled from the cohort 5-year
calendar-period matched risk sets. Fitting an ERR model for
cumulative exposure yielded an estimated ERR/100 WLM
of 0.37 (95% CI: 0.21, 0.75).

Employing countermatching to improve the efficiency of
this analysis with a small number of controls per case, we
conducted a 1:3 matched study with countermatching on the
radon exposure distribution of cases (15). The estimated
ERR/100 WLMwas 0.40 (95% CI: 0.22, 0.81)—very similar
in magnitude to the estimatewe obtained via a simple random
sample of controls in our 1:2 matched analysis but with a con-
fidence interval width closer to that obtained via the 1:40
matched analysis. Next, we fitted a model that adjusted for
cumulative smoking. The model was of the form uðRðtÞ;
SðtÞ; bR; bSÞ ¼ ð1þ bRRðtÞÞð1þ bSSðtÞÞ, where R(t) and
S(t) are cumulative radon and smoking 2 years prior to age
t, respectively. The smoking-adjusted estimate of bR was
ERR/100 WLM ¼ 0.38 (95% CI: 0.21, 0.77).

Lastly, we conducted a Cox regression analysis of the full
cohort by sampling all controls from the risk set for each
case. Fitting an ERR model for cumulative exposure, ad-
justed for smoking, yielded an estimated ERR/100 WLM of
0.38 (95% CI: 0.22, 0.75), very similar to the counter-
matched data analysis. When the ties were not broken,
there were 28 risk sets with 2 cases. In this example, the
Breslow likelihood and multiple-case conditional logistic
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regression-estimated smoking-adjusted cumulative radon
ERR/100 WLM were the same as the single-case risk-set
estimates to 2 decimal places.

DISCUSSION

Over the last 2 decades, the methods of Cox regression
and conditional logistic regression analysis of matched
case-control data have become widely used. These analyti-
cal methods are now routinely introduced in intermediate
courses in epidemiology and other disciplines and are read-
ily implemented using standard statistical packages. How-
ever, most standard statistical packages restrict the data
analyst to use of log-linear model forms. In this paper, we
have described an approach to using the SAS statistical
package to fit general relative risk models via the condi-
tional logistic likelihood. This permits the fitting of Cox
models and conditional logistic regression models to
matched case-control data in settings in which the investi-
gator wishes to use non-log-linear model forms. Approaches
to using SAS to fit Poisson and unconditional logistic gen-
eral relative risk models have been described previously (5,
6). However, to our knowledge, the Cox model and the
conditional logistic regression model have not been ad-
dressed in the prior literature.

While investigators can often accommodate non-log-
linearity by fitting more complex models, when effects di-
verge from the log-linear form it is often desirable and more
informative to summarize the dose-response effect as linear
on another scale or in some other way altogether, especially
when there is a practical reason or biologic basis. However,
non-log-linear model forms, such as the linear ERR model,
typically have computational restrictions, since the relative
risk cannot be negative. Consequently, the point estimate
and/or confidence limits for a parameter may not be ob-
tained. In some of our examples, the estimates could be
obtained but the range of valid parameter values needed to
be restricted via a bounds statement. In contrast, log-linear
models have the desirable property that estimated hazard
rates or odds are necessarily positive quantities, regardless
of the values of the linear predictor in the regression model.

General relative risk models allow for alternatives to the
usual assumption of an exponential dependence of relative
risk on exposure variables and multiplicative interactions.
Rather, exposure-response associations can be modeled un-
der a wide variety of parametric forms. General relative risk
models may be of particular interest in epidemiologic stud-
ies that focus on characterizing the form of a dose-response
association or the nature of interactions between model co-
variates. Historically, one obstacle to fitting general relative
risk models has been implementation using standard statis-
tical packages. Analysts have tended to use specialized soft-
ware or FORTRAN code that was written specifically for
fitting models of this form to epidemiologic data (7, 26). In
this paper, we have illustrated how general relative risk
models for survival time and matched case-control data
may be fitted using a standard statistical package. We have
used SAS software to illustrate the methods, but we hope
that they will be implemented using other software packages

as well. This paper should facilitate investigation of alter-
natives to log-linear models in epidemiologic data.
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APPENDIX 1

Creating a Case-Control-Level Data Structure From
a Person-Level Data Structure

The case-control-level data structure (cclevel) shown in
Table 1 can be generated from the person-level data struc-
ture (plevel) via a simple SAS data step, as shown below.

data cclevel (keep¼ setno z1-z3);

set plevel; by setno;

array z{3};

retain i z1-z3;

if first.setno then i ¼ 0;

i ¼ i þ 1;

z{i} ¼ z;

if last.setno then output;

run;

More generally, a SAS macro ‘‘make_case_control.sas’’ for
creating a case-control data structure from a person-level
data set is available at http://hydra.usc.edu/timefactors/
examples/exampl.html (topic 10). The macro facilitates the
handling of data sets with large numbers of explanatory
variables, as well as variable numbers of cases and controls.

Also available at http://hydra.usc.edu/timefactors is
a SAS macro for creating risk-set data from cohort data,
as well as example data sets and SAS code for performing
the analyses described in this paper.

APPENDIX 2

Fitting Non-Log-Linear Models to 1:Variable Matched
Case-Control Data

Consider a case-control-level data structure in which the
largest case-control sets have 11 members and the variable

ntot gives the number of subjects in the current set. Subject 1
is the case. A conditional logistic regression analysis of
these data employing the linear model form uðz; bÞ ¼
ð1þ bzÞ could be fitted via SAS as follows:

proc nlp data¼;

parms beta¼0;

profile beta / alpha¼.05;

array z z1-z11;

sum¼0; ntot¼ntot;

do i ¼ ntot to 1 by -1;

phi¼ 1þ(z{i}*beta);

sum¼sum þ phi;

end;

L¼log(phi/sum);

max L; run;

The profile statement specifies that 95% profile likelihood
confidence intervals are to be output. The ntot ¼ ntot line is
needed to initialize the variable. A mixture model of the
form uðz; bÞ ¼ ðezbÞað1þ zbÞ1�a may be fitted
to 1:variable matched case-control data via SAS, as follows:

proc nlp data¼ ;

parms beta¼0, alpha¼0;

profile alpha / alpha¼.05;

array z z1-z11;

sum¼0; ntot¼ntot;

do i ¼ ntot to 1 by -1;

phi¼((exp(z{i}*beta)**alpha)*((1þz{i}*beta)**(1-
alpha)));

sum¼sum þ phi;

end;

L¼log(phi / sum);

max L; run;

Note that the parms statement now includes 2 parameters (b
and a), both of which are initialized to 0.

APPENDIX 3

Fitting Non-Log-Linear Models to Risk-Set Data With
Countermatching

The largest case-control sets have 11 members, and the
variable ntot gives the number of subjects in the current set.
The countermatching weights are given by the variables w1–
w11. A model of the form u

�
z; b

�
¼ eðzbÞcan be fitted to

countermatched data, using the following SAS code.

proc nlp data¼;

parms beta¼0;

array z z1-z11;

array w w1-w11

sum¼0; ntot¼ntot;

do i ¼ ntot to 1 by -1;
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phi¼ exp(z{i}*beta)*w{i};

sum¼sum þ phi;

end;

L¼log(phi/sum);

max L; run;

APPENDIX 4

Fitting Models to Risk-Set Data With Multiple Cases in
the Case-Control Set Using the Recursive Algorithm

As an example, a model of the form u
�
z; b

�
¼ eðzbÞ can

be fitted to d:m data with a maximum of 5 cases and 11
subjects in the case-control set using the following code:

proc nlp data¼;

parms beta¼;

array z1-z11;

array b0a{5} b0a1-b0a5;

array b0b{5} b0b1-b0b5;

* calculate denominator using the recursive formula;

* at the end b0b{ncases} is the sum of products;

* initialize k-1 level and compute case set or;

casesetor ¼ 1; ncases¼ncases;

do i ¼ 1 to ncases;

phi ¼ exp(z{i}*beta);

casesetor ¼ casesetor*phi;

if i eq 1 then b0a{i} ¼ phi; else b0a{i} ¼ 0;

end;

* do the recursion;

ntot ¼ ntot;

do i ¼ 2 to ntot;

phi ¼ exp(z{i}*beta);

b0b{1} ¼ b0a{1} þ phi;

do j ¼ 2 to min(i,ncases);

b0b{j} ¼ b0a{j} þ b0a{j-1}*phi;

end;

* re-initialize the k-1 step array;

do j ¼ 1 to min(i,ncases);

b0a{j} ¼ b0b{j};

end;

end;

* log partial likelihood contribution from the risk set;

L ¼ log(casesetor / b0b{ncases});

max L; run;
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